

PROPROTEIN CONVERTASE SUBTILISIN/KEXIN TYPE 9 (PCSK9) GENETIC DELETION ATTENUATES AMYLOID-B PATHOLOGY, NEUROINFLAMMATION AND **IMPROVES** COGNITIVE FUNCTIONS IN AN ALZHEIMER'S DISEASE MOUSE MODEL

<u>B. Papotti¹, A. Vilella², M. Bodria², F. Zimetti¹, I. Zanotti¹, G. Remaggi¹, L. Elviri¹, F. Potì³, M.G. Lupo⁴, E. Daini², E. Vandini², M. Zoli², N.</u> Ferri⁴, D. Giuliani², F. Bernini¹

¹Department of Food and Drug, University of Parma, Parma, Italy; ²Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; ³Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy; ⁴Department of Medicine, University of Padova, Padova, Italy

Background: PCSK9 may be involved in the pathogenesis of Alzheimer's disease (AD) beyond its	\$)[Aim: to inve	estigate the influen	ce of P	CSK9 on
well-established plasma cholesterol-regulating activity, although the underlying mechanisms are no	t	cognitive	performances,	Αβ	plaque
fully understood. Consistently, we found elevated PCSK9 levels in the cerebrospinal fluid of AI		deposition,	neuroinflamm	nation,	brain

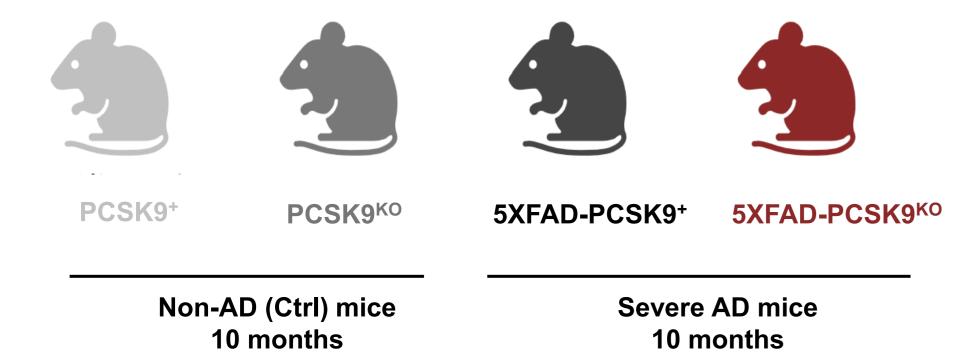
patients¹ and recently demonstrated in vitro that PCSK9 impairs HDL-mediated cholesterol

transport from astrocytes to neurons and enhances amyloid β (A β)-induced neurotoxicity².

cholesterol and its key oxidative metabolites

in a mouse model of severe AD (5XFAD^{het} mice).

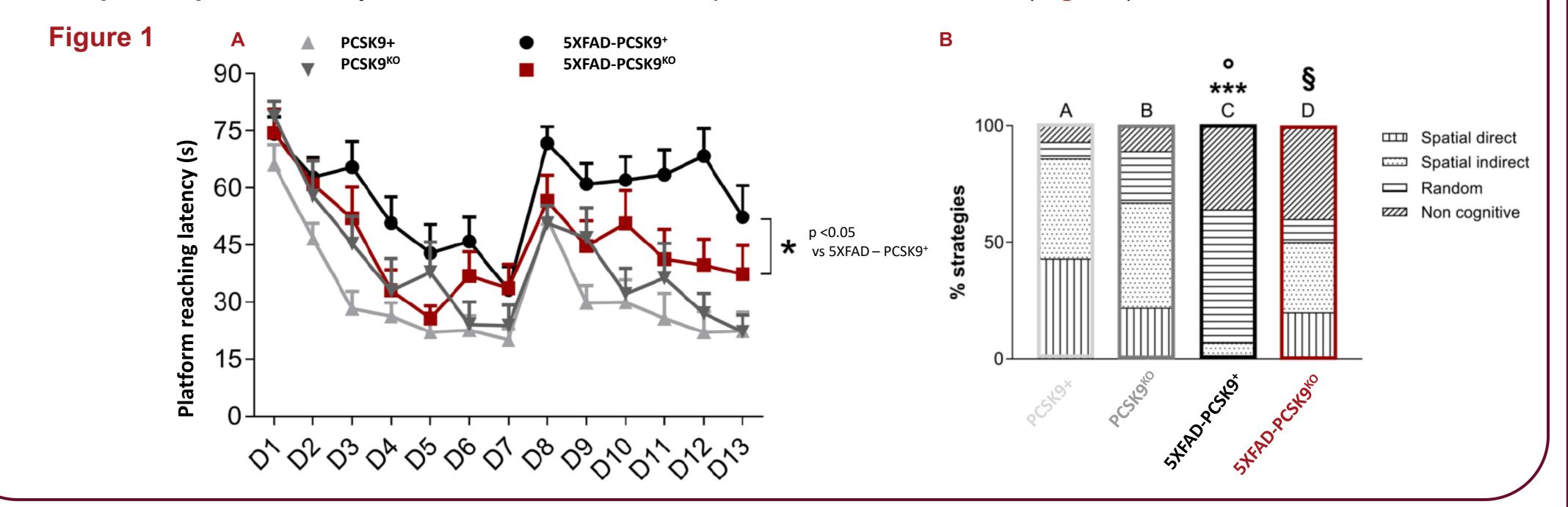
MAIN FINDINGS:


Present data evidence a protective role of PCSK9 genic deletion in 5XFAD^{het} mice against AD-related cognitive impairment, which is associated

with reduced Aß cerebral deposition, attenuated neuroinflammation and a partial restoration of brain cholesterol concentration, thus providing

the bases to identify PCSK9 as a valuable pharmacological target for the development of novel therapeutic strategies for Alzheimer's Disease.

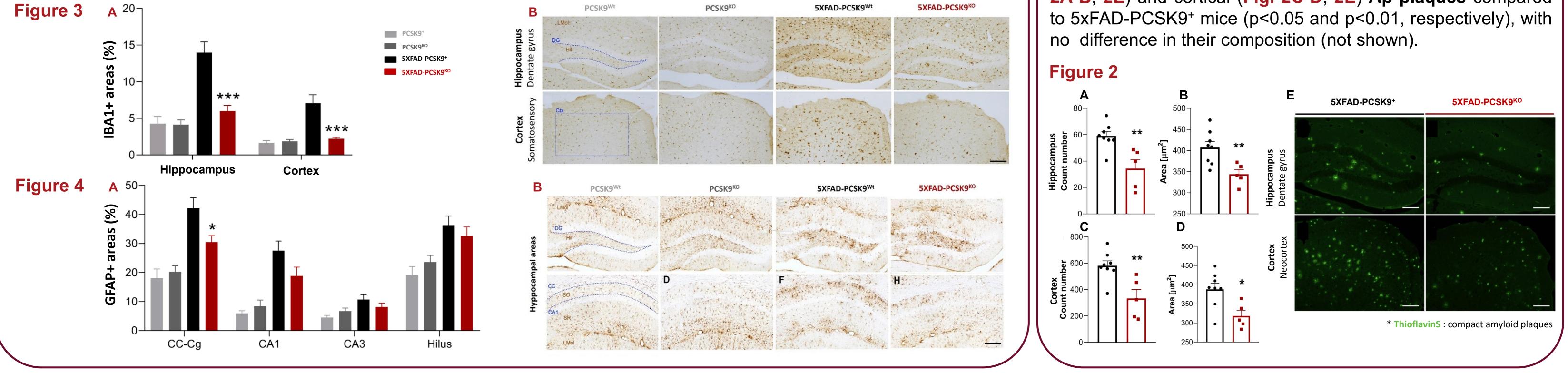
Methods


We generated a mouse model of severe AD in which PCSK9 was genetically ablated (n=12), compared with AD mice expressing PCSK9 (n=15) and with WT mice expressing (n=14) or not expressing PCSK9 (n=10).

Results (I):

PCSK9 genetic ablation in AD mice improves spatial-reference learning and memory

5xFAD-PCSK9⁺ mice (black) are characterised by a worse learning curve (platform reaching latency, Fig. 1A) compared to Ctrl mice (grey), whereas 5xFAD-PCSK9^{ko} mice (red) show a significantly reduced latency compared to 5xFAD-PCSK9⁺ mice (p<0.05), with values similar to those of Ctrl mice. Occupancy plots confirm the development of a quadrant- and platform position-specific preference by 5XFAD-PCSK9^{Ko} mice compared to 5XFAD-PCSK9⁺ (Fig. 1B).

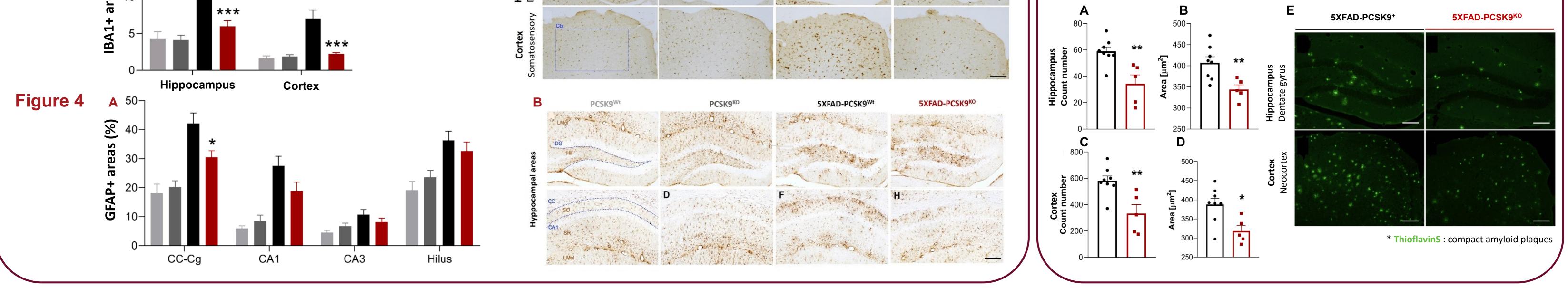


At 10 months of age we assessed cognitive performances (spatial learning and memory using the Morris Water Maze test), hippocampal and cortical Aβ burden (ThioflavinS⁺ staining), microglial and astrocytic reactivity (IBA1⁺ and GFAP⁺, respectively; IHC), and cerebral cholesterol and (fluorometric hydroxysterols LC-MS/MS and content analyses).

Results (II):

PCSK9 genetic ablation in AD mice attenuates cortico-hippocampal neuroinflammation

5xFAD-PCSK9⁺ show a significant increase in cortico-hippocampal IBA1 ir, an index of microgliosis, compared to Ctrl mice, which is significantly counteracted by the loss of PCSK9 in 5XFAD mice (Fig. 3A-B). Similarly, also GFAP ir, an index of astrocyte reactivity, is increased in 5XFAD-PCSK9⁺ mice compared to Ctrl mice, and is overall counteracted by the absence of PCSK9, reaching a statistically significant difference only in the hippocampal corpus callosum (Fig. 4A-B)



Results (III):

PCSK9 genetic ablation in AD mice reduces cortico-

hippocampal Aβ burden

5xFAD-PCSK9^{ko} mice are characterised by a significant reduction in the number (-40%) and area of hippocampal (Fig. **2A-B**, **2E**) and cortical (Fig. 2C-D, 2E) Aβ plaques compared

Table 1	CHOLESTEROL	CHOLESTEROL OXYSTEROLS			
Group	µg/mg cerebral tissue	24-OHC [ng/ml]	25-OHC [ng/ml]	27-OHC [ng/ml]	
PCSK9+	1.86 ± 0.58	2.67 ± 0.89	n.d.	2.10 ± 0.80	Br
PCSK9KO	1.35 ± 0.77	3.08 ± 0.74	n.d.	2.32 ± 1.82	m P(
5XFAD-PCSK9+	0.95 ± 0.42 **	3.45 ± 1.59	n.d.	1.95 ± 1.96	th
5XFAD-PCSK9KO	1.18 ± 0.57	2.87 ± 1.84	n.d.	1.86 ± 1.21	nc

Results (IV):

PCSK9 genetic ablation in AD mice partially restores brain cholesterol concentration Brain cholesterol concentration is similar in Ctrl groups, regardless of PCSK9 expression, whereas 5XFAD-PCSK9+ nice have significant lower brain cholesterol (p<0.01 vs Ctrls). This reduction is partially reversed in 5XFAD-**CSK9^{KO} mice** (Table 1). The most relevant bioactive cholesterol metabolites, 24-, 25- and 27-HC, were quantified in he brain, observing comparable brain 24- and 27-HC levels between the four experimental groups, while 25-HC was not detectable.

¹Zimetti F et al., (2017). Increased PCSK9 cerebrospinal fluid concentrations in Alzheimer's disease. Journal of Alzheimer's Disease; ²Papotti B et al., (2022). PCSK9 Affects Astrocyte Cholesterol Metabolism and Reduces Neuron Cholesterol Supplying In Vitro: Potential Implications in Alzheimer's Disease. Int J Mol Sci

UNIVERSIT

DI PARMA

Copyright © 2024 Bianca Papotti – bianca.papotti@unipr.it